A Review of Biochar and Soil Nitrogen Dynamics

نویسندگان

  • Tim J. Clough
  • Leo M. Condron
  • Claudia Kammann
  • Christoph Müller
چکیده

Interest in biochar stems from its potential agronomic benefits and carbon sequestration ability. Biochar application alters soil nitrogen (N) dynamics. This review establishes emerging trends and gaps in biochar-N research. Biochar adsorption of NO3, up to 0.6 mg g biochar, occurs at pyrolysis temperatures >600 °C with amounts adsorbed dependent on feedstock and NO3 concentration. Biochar NH4 adsorption depends on feedstock, but no pyrolysis temperature trend is apparent. Long-term practical effectiveness of inorganic-N adsorption, as a NO3 leaching mitigation option, requires further study. Biochar adsorption of ammonia (NH3) decreases NH3 and NO3 losses during composting and after manure applications, and offers a mechanism for developing slow release fertilisers. Reductions in NH3 loss vary with N source and biochar characteristics. Manure derived biochars have a role as N fertilizers. Increasing pyrolysis temperatures, during biochar manufacture from manures and biosolids, results in biochars with decreasing hydrolysable organic N and increasing aromatic and heterocyclic structures. The shortand long-term implications of biochar on N immobilisation and mineralization are specific to individual soil-biochar combinations and further systematic studies are required to predict agronomic and N cycling responses. Most nitrous oxide (N2O) studies measuring nitrous OPEN ACCESS Agronomy 2013, 3 276 oxide (N2O) were short-term in nature and found emission reductions, but long-term studies are lacking, as is mechanistic understanding of reductions. Stable N isotopes have a role in elucidating biochar-N-soil dynamics. There remains a dearth of information regarding effects of biochar and soil biota on N cycling. Biochar has potential within agroecosystems to be an N input, and a mitigation agent for environmentally detrimental N losses. Future research needs to systematically understand biochar-N interactions over the long term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of biochar on nitrogen retention in soil under corn plant inoculated with arbuscular mycorrhizal fungi

Maintaining the levels of nitrogen in agricultural fields to ensure crop yield performance is challenging due to the complex dynamics of nitrogen transformation in soil. Nitrogen is mainly taken up by plant roots in the form of nitrate, but it is considered as an environmental pollutant that threatens human and animal health. Therefore, it is necessary to use adsorbent compounds to retain nitra...

متن کامل

Characterization and Effect of Biochar on Nitrogen and Carbon Dynamics in Soil

In the current study the biochar material was produced by the indigenous pyrolysis of prosopis wood material under high temperature and characterized. The impact of biochar on carbon and nutrient dynamics in soil was examined by conducting a laboratory closed incubation experiment. The biochar produced from prosopis was neutral in pH with an exchangeable acidity of 49 mmol kg. The cation exchan...

متن کامل

Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study

This study examined the effect of nitrogen (N) on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant) straw in absence (BC0) and presence (BCN) of N and monitored for dynamics of carbon dioxide (CO2) f...

متن کامل

Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emission...

متن کامل

Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil

Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (CO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013